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Abstract. We study the properties of a two-dimensional interacting electronic system in the
presence of a staggered magnetic field. We find that metal–insulator transitions can be achieved at
both zero and non-zero temperatures. A d-wave-like pseudogap is opened on the two-dimensional
square Fermi surface. The staggered magnetic flux is found to suppress the antiferromagnetic order.
When random fluctuations of the perfect staggered field are turned on and increased, a finite region
of Fermi surface around (±π/2,±π/2) will be gradually formed as the bandwidth decreases. We
also find that the assumed disturbed staggered field in our model can actually simulate the spin
fluctuations occurring in the interacting system.

1. Introduction

Since the discovery of the quantum Hall effect [1, 2] and colossal magnetoresistance [3, 4],
quantum systems under external fields have attracted much attention. Among their many
characteristic properties, the field-induced phase transition is particularly interesting to both
theoreticians and experimentalists. Theoretically, the magnetic-field-induced metal–insulator
transition due to a random magnetic field in two dimensions has been studied by several
authors [5–7]. They have argued that in the presence of a random magnetic field the states in
the centre of the band are delocalized and the density of states there has a singularity. Moreover,
Ryuichi Ugajin also found a sharp electric-field-induced metal–insulator Mott transition in a
two-dimensional two-layered system [8, 9].

More recently, the electronic transmission properties for inhomogeneous flux in one-
dimensional chains have been studied numerically; very interesting transmission behaviour has
been found, which might be useful in applications in the fabrication of special devices [10–12].
In fact, it is now experimentally possible to construct and detect a field that is inhomogeneous
at scales well below micrometres, and thus quantum system properties under magnetic fields
are also very attractive and important to experimentalists.

One purpose of this paper is to study from a different viewpoint the properties of a two-
dimensional interacting electronic system in the presence of a staggered magnetic field whose
quantized staggered fluxes go through the plaquettes of the lattice alternately. The model
employed here is the Hubbard model, which is defined by

H = −t
∑
〈ij〉σ

c+
jσ ciσ + U

∑
i

niσ ni−σ (1)
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where 〈ij〉 denote nearest neighbours, t hopping transfers, and U the Coulomb repulsion
which accounts for electron–electron correlations. For exactly one electron per site, i.e., a
half-filled band, it has become fairly well known that this model for large U has a two-
sublattice (commensurate) antiferromagnetic (AF) insulating ground state with all electrons
localized. However, for smaller U , although the electrons are itinerant rather than localized,
the ground state is still the antiferromagnetic one because of the instability due to the nested
Fermi surface.

Another purpose of this paper is to investigate whether the assumed staggered magnetic
field can account for the antiferromagnetic fluctuations occurring in the interacting system.
Generally, one may introduce a staggered magnetic field into the system by carrying out a
local gauge transformation of the electron’s internal coordinate, in which the interaction term
is invariant and which may cause electrons circling any plaquette of a 2D square lattice to suffer
a phase shift π [13]. The state is known as the π -phase flux state. This is a direct consequence
of the two-valuedness of spin-1/2 wave functions and the doubly connected topology of the
rotation group manifold SO(3) [14, 15]. Therefore, a staggered magnetic flux with half of the
flux quanta can be introduced so as to go through each plaquette identically. Furthermore, a
random magnetic field can also be introduced if a random gauge field is considered [1,16,17].
Moreover, in references [18, 20], a rather general flux state (a θ -phase flux state, θ �= π ) is
introduced in the t–J model by the authors using a Hubbard–Stratonovich transformation to
compete with the d-wave-pairing state.

However, on the other hand, the disturbed staggered magnetic field can actually be seen
to come from the antiferromagnetic fluctuations. The reason for this is the following: the
effective flux through each plaquette φi which acts on electrons can be seen to be proportional
to the sum of the spin fluctuations on the four corners of the plaquette i. Thus correlations
between these fluxes can be attributed to the correlations between spin fluctuations 〈δSi ·δSj 〉,
where

Si =
∑
αβ

σαβc
+
iαciβ

is the local spin operator at the site i. Although the flux averages to zero, it can actually deviate
from zero due to spin fluctuations, and then cause the electrons to feel an effective fluctuating
magnetic field with the quantized φ averaging to zero. Furthermore, the field is a fluctuating
staggered field, because antiferromagnetic correlations would cause the neighbouring fluxes
to correlate with each other oppositely: 〈φiφj 〉 = −f (x, T ), where f is a positive quantity
which can be dependent on the temperature T or hole doping x. The concrete form of f will
be determined elsewhere [19]. We can treat this flux fluctuation approximately by assuming
that φi = (−1)iφ + δφi , where φ = √

f and the δφi are random fluctuations which are such
that 〈δφi〉 = 0 and 〈δφi δφj 〉 = 0. Thus a disturbed staggered flux is introduced. The reason
that we can proceed in this way is that this staggered flux state is actually more energetically
favourable than all the other states with non-zero flux (see the appendix). This is physically
because the staggered pattern, which does not break the translational symmetry, has a flux
equivalent to zero for any magnetic unit cell of the lattice [20].

Note that although the correlations between the fluxes are short range, we would like to
consider here an ideal staggered flux {φ,−φ} to account for them. The random fluctuations
δφ can be seen to come physically from the long-range disorder. Since the spin fluctuation is
sensitive to temperature and hole doping, the quantum fluxes here are also actually temperature
and doping dependent. In fact, in the model employed here, increasing spin fluctuations would
correspond to a process of weakening of the short-range correlation (i.e., decreasing φ) and,
simultaneously, of strengthening of the long-range disorder (i.e., increasing the amplitude
of δφ).
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The paper is organized as follows. In the next section, we study the effects of a perfect
staggered flux. We give the electron density of states (DOS) to show the suppression of
the long-range order due to the staggered field. The Fermi surface at half-filling is then
found to be point-like, giving a d-wave pseudogap and power laws. The possibility of metal–
insulator transitions with varying φ is also argued for. The induced current is finally given,
and shows very interesting temperature- and flux-dependent behaviour. In section 3, the case
of the disturbed staggered flux is discussed. The evolution of the Fermi surface with the
random fluctuations is given. We find that this is very similar to what has been observed in
angle-resolved photoemission spectra (ARPES) experiments for underdoped cuprates [21]. In
section 4, we summarize our results and conclusions.

2. Features under a perfect staggered magnetic field

Now we discuss our model. We restrict ourselves to the half-filled case. In this particular
situation, there exists long-range antiferromagnetic ordering for any non-zero U . Although
the Hartree–Fock (HF) approximation usually overestimates the symmetry breaking, it does
give the correct answer here (in the weak-coupling limit), as validated by early analytical and
numerical studies. After the HF decoupling process, the mean-field Hamiltonian can be given
by (the constant term is omitted)

HMF = −t
∑
〈ij〉σ

(c+
iσ cjσ + h.c.)−mU

∑
kσ

σc+
k+Qσ ckσ (2)

where Q = (π, π), and m is the antiferromagnetic order parameter, defined by

m = 1

N

∑
i

〈(ni↑ − ni↓)〉.

With staggered magnetic fluxes introduced to go through the plaquettes of the square
lattice, as shown in figure 1, an interesting mechanism of competition between the Coulomb
correlation and the staggered field would appear. The Coulomb repulsive correlation U

tends to arrange the nearest-neighbour spins antiferromagnetically, i.e., to maintain an anti-
ferromagnetic order (or spin-density-wave (SDW) order). On the other hand, the staggered

− φ − φ

− φ − φ

− φ− φ

− φ− φ

φφ

φ

φφ

φ

φφ

Figure 1. A two-dimensional square lattice, through each square plaquette of which the fluxes
φ and −φ are threaded alternately. Any electrons hopping along the directions indicated by the
arrows in the figure would suffer a phase shift of δ/4, where δ = 2πφ/φ0.
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magnetic flux in each plaquette tends to turn the spins on the corners of each plaquette to
make them run parallel in the direction of the flux, i.e., it will suppress the antiferromagnetic
order. Thus a larger critical Coulomb correlation Uc is needed to switch on this long-range
ordering.

This can also be easily understood if we see the staggered field as a simulation of spin
fluctuations, which become large when, for example, a doped hole is introduced, and then cause
a non-zero criticalUc to stabilize a long-range order. As is known, the HF approximation always
overestimates the electron correlations because of its mean-field nature. Thus in this situation,
it is more reasonable and physical to consider a staggered flux to account for the fluctuations,
which would reduce the overestimation of the correlations. Thus from this viewpoint, this
method has gone beyond the conventional mean-field method for the interacting system without
an external field.

The hopping transfers of electrons, tij , should be modified, because electrons hopping
from one site to its neighbours would suffer phase shifts, according to the AB effect [22],
which is a special manifestation of Berry’s phase [23]. The selection of the distribution of
these phase shifts is arbitrary as long as it ensures that an electron circling a plaquette once
suffers a phase shift of δ = 2πφ/φ0, which is gauge invariant. Here, we adopt a symmetric
phase configuration, as shown in figure 1. An electron hopping along (against) the direction
of the arrows suffers a phase shift of δ/4 (−δ/4). Specifically, one has tij = teiδij and

〈ij〉 = (0, 1), (0,−1), (1, 0), (−1, 0)

δij = −δ/4,−δ/4, δ/4, δ/4.
Thus the mean-field Hamiltonian in k-space reads

HMF =
∑
kσ

{cos(δ/4)εkc
+
kck − (Umσ + i sin(δ/4)�k)c

+
k+Qσ ckσ } (3)

where εk = −2t (cos kx +cos ky) is the band energy and�k = 2t (cos kx −cos ky) is a quantity
with d-wave symmetry; so the energy spectrum can be given by

ω±
k = ±

√
cos2(δ/4)ε2

k + sin2(δ/4)�2
k + (Um)2 (4)

where the antiferromagnetic order parameter m is determined by the following self-consistent
equation:

1 = U

2N

∑
k

f (ω−
k )− f (ω+

k)√
cos2(δ/4)ε2

k + sin2(δ/4)�2
k + (Um)2

. (5)

At half-filling, the lower sub-band is filled completely, with the upper sub-band empty. In
the absence of the magnetic field, the Fermi surface is nested by Q = (π, π). However, as one
turns on the staggered magnetic flux, the Fermi surface becomes four points: (±π/2,±π/2).
Note that this point-like Fermi surface is a general feature of the flux phase [13]. The original
square Fermi surface was concave inside, as illustrated in figure 2 by the shifting of the peaks
of the density of states (DOS) as a function of p = φ/φ0 for m = 0. In reference [15], John
and Müller-Groeling give a similar DOS for the π -phase flux state in the absence of SDW
order. Because of this property of the DOS, the integral or sum in equation (5) would always
converge, which is quite different from the situation where the magnetic field is absent. Thus
at zero temperature there exists a non-zero critical value Uc for the onset of antiferromagnetic
order:

Uc =
(

1

2N

∑
k

|cos2(δ/4)ε2
k + sin2(δ/4)�2

k|−1/2

)−1

. (6)
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Figure 2. Normalized density of states versus energy for different magnetic fields, wherep = φ/φ0
and m = 0. The curves are symmetric with respect to p = 0.5, i.e., the curve for a value of p
which is less than 0.5 is identical to that for 1 − p.

We show the dependence of Uc on magnetic flux φ in figure 3. Note that in the absence of
the staggered field any small U would stabilize an antiferromagnetic order at half-filling. This
unusual non-zero Uc can also be produced if we introduce into the model the next-nearest-
neighbour hoppings to disturb the antiferromagnetic order instead of a magnetic field [24,25]—
although the mechanisms are different. Here, the non-zero Uc is caused by the magnetic flux
and it can be changed as one tunes the flux. Thus we have just proved the statement made

0.0 0.2 0.4 0.6 0.8 1.0
0.0
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0.6

0.8

U
c
/t

φ /φ
0

Figure 3. The critical value Uc/t versus the magnetic flux ratio φ/φ0. The curve is symmetric
with respect to φ = 0.5φ0, and periodic with period φ0.



7588 Jin An and Chang-De Gong

earlier that the existence of staggered magnetic flux suppresses the antiferromagnetic ordering.
In fact, in the large-U limit, we also have

m = 1

2
− 4

t2

U 2
+ 3(1 + cos2 δ)

t4

U 4
(7)

and it can be easily seen that having a finite δ decreases m.
Now we can achieve a magnetic-field-induced metal–insulator transition when modul-

ating φ if U is so small that it is actually less than the maximum value of Uc, i.e., U < Umax
c .

This transition happens because the long-range order would disappear in a certain region of φ
(whereUc(φ) > U)where the system has been changed from an insulator (whereUc(φ) < U)

with a finite gap into a gapless metal. Since the staggered flux suppresses the long-range order,
the Néel temperature in the presence of a magnetic field, Tc(φ), would be smaller than that in
the absence of a magnetic field, Tc(0). At finite temperatures (with Tc(φ0/2) < T < Tc(0)),
however, one can expect another type of field-induced metal–insulator transition to occur only
if φ is modulated continuously in a period.

This existence of two types of field-induced transition can actually be understood if we
approach our consideration from the viewpoint that the staggered field is a simulation of the spin
fluctuations—the transitions just arise from the equivalent fact that when, for example, holes are
doped in, which causes the fluctuations to become stronger, the long-range antiferromagnetic
order will disappear.

In the absence of long-range order, the bandwidth W can be given by

W = 4t cos(δ/4) (|φ| < φ0/2). (8)

From figure 2, it can be seen that the bandwidth is a decreasing function of φ with φ ranging
from 0 to (1/2)φ0. This means that the electron effective hopping would be suppressed
by increasing the magnetic flux within that region. Moreover, an anisotropic ‘d-wave’-type
pseudogap would be opened on the original Fermi surface, where εk = 0:

�̃k = 4t |sin(δ/4)||coskx − cos ky | (|φ| < φ0/2). (9)

Because of this pseudogap, most thermodynamical properties of the system should follow
a power law at low temperatures. In order to illustrate the modulation of the power law by the
magnetic field, we give below the density of states near the Fermi surface explicitly:

ρ(ε) = π

|sin(δ/2)|t2 |ε| when |ε|  t |sinδ/2|
(ρN(ε) ∝ ln|ε| when |ε|  t |)

(10)

where ρN(ε) is the density of states for the normal case with φ = 0. Note that this linear
behaviour near zero energy has already been shown in figure 1. Thus the temperature depend-
ence of the specific heat and the rate of absorption modulated by the magnetic flux will then
obey the power laws

C ∝ T 2

|sin(δ/2)| (CN ∝ T ) when kBT  t |sin(δ/2)|

Re σ

Re σN
∝




ω

|sin(δ/2)| when kBT  ω  t |sin(δ/2)|
T

|sin(δ/2)| when ω  kBT  t |sin(δ/2)|

(11)

where CN and Re σN are the quantities corresponding to the case with φ = 0. As expected,
the system behaves like something between a metal and an insulator, i.e., a semi-metal.
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Before ending this section, we would like to give the field-induced current and its distrib-
ution. To be explicit, let us consider the current flowing from one site to its nearest neighbour
in the x-direction [26]:

Ix = 2et

h̄
Im(exp(iδ/4)〈c+

i+x̂ci〉) = 4et

h
sin(δ/2)A(δ, T ) (12)

where

A(δ, T ) = a2

2π

∫
k∈BZ

dk cos(kxa) cos(kya)

×
tanh

(
(β/2)

√
cos2(δ/4)ε2

k + sin2(δ/4)�2
k + (Um)2

)
√

cos2(δ/4)ε2
k + sin2(δ/4)�2

k + (Um)2
. (13)

The flux dependences of the current at different temperatures are shown in figure 4. The
currents are functions of φ with period φ0 and decrease with temperature. They change
smoothly through zero. In a similar way, one can obtain the current flowing in the other
directions: I−x = Ix = −Iy = −I−y . Using the translational symmetry, one can get the
distribution of current for the whole system. The distribution is exactly the same as that shown
by the arrows in figure 1. The only difference is that in a period φ0, the direction of the current
changes twice.
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4et/h

(φ /φ
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n
t

Figure 4. Current versus magnetic flux ratio φ/φ0 for various temperatures, where the order
parameter � = Um/t is set to be 1. The temperatures are kT = 2t, 2t/2, 2t/3, . . . 2t/6. The
current is gradually suppressed with increasing temperature.

3. Features under a disturbed staggered magnetic field

In section 2, we have studied the properties of the system under a perfect staggered magnetic
field. However, from the viewpoint of the simulation of the spin fluctuations, the staggered
flux is a special pattern of the fluctuating fluxes. The reason that we can proceed in this way
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is that, as mentioned before, the staggered pattern is the most energetically favourable among
the fluctuating ones. In the appendix, we have considered a series of translational-symmetry-
broken flux patterns which deviate from the staggered one in a perturbational way, and have
shown that the energy of the staggered flux state is actually the minimum one.

Since the staggered flux state is the most favourable one, it is reasonable to expect the
staggered field to account for the short-range antiferromagnetic order. However, the long-
range disorder has not been considered until now, and in actual physical situations, it is so
important that it cannot be neglected. In order to demonstrate its importance, in this section
we would like to describe the evolution of the Fermi surface with the disturbed flux. Here, we
restrict ourselves to the half-filling case, i.e., there is no hole doping, so from the viewpoint
of simulation of the spin fluctuations, we would like to give equivalently the evolution of the
Fermi surface with temperature, not hole doping. We still assumem = 0, which means that the
long-range antiferromagnetic order is absent. To start, we discuss the case corresponding to the
magnetic flux configuration as shown in figure 5(b) with φ±

1 = φ± δφ1, φ±
2 = φ± δφ2, where

δφ1 (2) are small deviations. For this special deviated-flux configuration, we have calculated
the energy dispersion and found that the points with zero gaps occur at the following 16 points:(

±π
2

± w(−),±π
2

± w(+)

)
(14)

where

w(±) = π

2φ0
(δφ1 ± δφ2). (15)

Thus, compared with the case of perfect staggered flux, equation (9), the number of points
with zero gap is quadrupled. For the configuration shown in figure 5(a), which is a special
case of figure 5(b) with δφ1 = δφ2, the number of points with zero gap is just doubled. Note
that the position of these points is just the Fermi surface of the system at half-filling, which is
point-like as before, but with the number of points increased. So we expect to obtain a finite
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Figure 5. Two symmetric flux deviations from the staggered magnetic field. A, B, C, D are the four
types of site in the corresponding sublattices, and δ1, δ2 are the phase shifts of electrons hopping
along the directions indicated by the arrows. (a) is a special case of (b) with δφ1 = δφ2.
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density of states with zero gap on the Fermi surface as the fluctuation in the magnetic flux
becomes strong.

To investigate this problem, we introduce random fluctuations, which should account for
the long-range disorder, into the staggered magnetic flux φ such that

φi = (−1)iφ + δφ RAND[−1, 1] (16)

where RAND[−1, 1] stands for random numbers uniformly distributed from −1 to 1 and δφ is
the amplitude of the random fluctuations. For random φi , analytical solution is impossible, so
we diagonalize the Hamiltonian matrix numerically for a 40 × 40 site lattice as an illustration.
In figure 6, we present results for the DOS for φ = 0.2, δφ = 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2
(in units of φ0). We observe that as δφ is increased:

(1) the system has more and more states with zero gap, i.e., the Fermi surface has evolved
from several points to a finite region around points (±π/2,±π/2), which is consistent
with the conclusion that we drew from figure 5(b). Since the states at the centre of the
energy band are delocalized, i.e., extended [5, 6], the conductivity of the half-filled band
would increase continuously with fluctuation of the staggered magnetic field. Note that
this behaviour of the evolution of the pseudogap with the fluctuation of the staggered
magnetic field is very similar to what is observed for underdoped cuprates in ARPES
experiments [21]. This can be understood well if we see it as the evolution of the Fermi
surface with temperature, on the basis of the viewpoint that the disturbed staggered flux is
a simulation of the spin fluctuations which can be temperature dependent. Note also that in
reference [27], a fluctuating U(1) staggered gauge field is studied, to obtain the evolution
of the Fermi surface with hole doping in underdoped cuprate. Moreover, the dependence
of the DOS there on the temperature and doping is quite similar to that obtained here on
the random fluctuating flux. We do not know whether the disturbed staggered flux and
the fluctuating staggered gauge field are the same thing, but we believe that they should
be correlated in some way.
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Figure 6. The density of states for the disturbed staggered magnetic field with φ = 0.2φ0 and
(a) δφ = 0.2φ0, (b) δφ = 0.4φ0, (c) δφ = 0.6φ0, (d) δφ = 0.8φ0, (e) δφ = 1.0φ0, (f ) δφ = 1.2φ0.
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(2) When δφ is large enough, the DOS resembles that for the tight-binding model in the
absence of the field, because its singularity at zero energy has been recovered gradually.
The completely random cases for φ = 0 have also been calculated and the singularities at
zero energy are still present (see figure 7). This feature is in agreement with the previous
result calculated by other authors [5, 28]. Note that the case for φ = 0 can be seen from
the viewpoint of the simulation of fluctuations as a situation where the fluctuation is so
large that even the short-range order has already disappeared.

(3) The bandwidth is a decreasing function of δφ. This feature does not change for the case
where φ = 0. This means that the effective electron hopping can be suppressed by
the fluctuation of the staggered magnetic field. Some wiggles appearing in figure 5 are
finite-size effects.
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Figure 7. The density of states for the random magnetic field with φ = 0 and (a) δφ = 0.2φ0,
(b) δφ = 0.4φ0, (c) δφ = 0.6φ0, (d) δφ = 0.8φ0.

4. Conclusions

In conclusion, we have studied properties for an interacting system under a staggered magnetic
field. We found that the staggered magnetic flux suppresses the long-range antiferromagnetic
ordering. Peaks in the density of states are shifted by the magnetic flux. Magnetic-field-
induced metal–insulator transitions can also be realized at both zero and non-zero temperature.
An anisotropic ‘d-wave’ pseudogap is opened in the Fermi surface at half-filling. Thus
most thermodynamical properties of the half-filled system should follow a power law at low
temperatures. Finally, we introduced random fluctuations into the staggered flux and studied
the effects of this on the density of states. We showed that the system developed a finite portion
of Fermi surface with zero gap around four points (±π/2,±π/2), whereas for the case of
perfect staggered magnetic flux, there are only the four points on the Fermi surface with zero
gap. This is very similar to what was observed for underdoped cuprates in angle-resolved
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photoemission spectra (ARPES) experiments. Thus the conductivity of the half-filled band
would increase with the fluctuation. The bandwidth is a decreasing function of the fluctuation.

On the other hand, we found that the disturbed staggered field assumed in our model
can actually be seen as a simulation of the spin fluctuations in the interacting system. This
point is supported by many of the properties described above, which makes us believe that the
features discussed in this paper are more physical for the weakly interacting system without
the external field because the spin fluctuations have been reasonably well described. From
this viewpoint, this can be seen as an improved method, which goes beyond the conventional
mean-field approach for the interacting system.
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Appendix

In this appendix, we would like to show that the staggered flux pattern is the most energetically
favourable state, as compared to the other patterns with non-zero flux. In fact, the staggered
flux state represents an energy minimum with respect to the states with small deviations from
it. To address this question, let us consider other configurations of flux, which have broken
the translational symmetry and have small deviations from the staggered one. We treat these
deviations as perturbations and calculate the ground-state energy. For simplicity, we consider
the case of small U (U < Uc) so that the long-range order is absent. For physical reasons,
let us discuss the case shown in figure 5(a), where a symmetric deviation is imposed. With
φ1 = φ − δφ and φ2 = φ + δφ, the reduced Hamiltonian can be given by

H = −t
∑
k

(2e−iδ1(cos kx)B
+
k Ak + (eiδ3+iky + eiδ2−iky )C+

k Ak

+ (e−iδ3+iky + e−iδ2−iky )D+
k Bk + 2eiδ1(cos kx)D

+
k Ck + h.c.) (A.1)

where Ak, Bk, Ck,Dk refer to annihilation operators for A, B, C, D sublattices respectively
and the δi (i = 1, 2, 3) are defined by

δ1 = π

2
φ/φ0 δ2 = δ1 − π δφ

φ0
= δ1 − y δ3 = δ1 + y (A.2)

with y = π δφ/φ0 being a small quantity. The energy spectrum reads

εk = ±
{

1

2
{(2|a|2 + |b|2 + |c|2)

± [(2|a|2 + |b|2 + |c|2)2 − 4(|a|4 + |b|2|c|2 − 2Re(a2bc))]1/2}
}1/2

(A.3)

where

a = 2teiδ1 cos kx b = 2teiδ1 cos(ky + y) c = 2teiδ1 cos(ky − y). (A.4)

The ground state of the system is the state with the two lower sub-bands filled and the two
higher sub-bands completely empty. After some tedious calculations, the ground-state energy
of the system is as follows:

E = E0 + ηy2 (A.5)
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where E0 is the ground-state energy for the perfect staggered flux state and

η = 2t2 sin2(δ/2)

|cos(δ/2)|
∑
k

|cos ky |
|cos kx |

(
1√

|a|2 + |d|2 − 2|a||d||cos(δ/2)|

− 1√
|a|2 + |d|2 + 2|a||d|| cos(δ/2)|

)
> 0 (A.6)

with d = 2teiδ1 cos ky . Obviously, the energy for the staggered flux state is the minimum one
among those of these slightly deviating states, so the staggered pattern is actually the most
energetically favourable one of all the fluctuating patterns with non-zero flux. This is physically
because the staggered state preserves the translational symmetry and has an equivalent zero
flux for any magnetic unit cell of the lattice [20].
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